Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Emerg Microbes Infect ; 10(1): 2141-2150, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1532382

ABSTRACT

BACKGROUND: We studied humoral and cellular responses against SARS-CoV-2 longitudinally in a homogeneous population of healthy young/middle-aged men of South Asian ethnicity with mild COVID-19. METHODS: In total, we recruited 994 men (median age: 34 years) post-COVID-19 diagnosis. Repeated cross-sectional surveys were conducted between May 2020 and January 2021 at six time points - day 28 (n = 327), day 80 (n = 202), day 105 (n = 294), day 140 (n = 172), day 180 (n = 758), and day 280 (n = 311). Three commercial assays were used to detect anti-nucleoprotein (NP) and neutralizing antibodies. T cell response specific for Spike, Membrane and NP SARS-CoV-2 proteins was tested in 85 patients at day 105, 180, and 280. RESULTS: All serological tests displayed different kinetics of progressive antibody reduction while the frequency of T cells specific for different structural SARS-CoV-2 proteins was stable over time. Both showed a marked heterogeneity of magnitude among the studied cohort. Comparatively, cellular responses lasted longer than humoral responses and were still detectable nine months after infection in the individuals who lost antibody detection. Correlation between T cell frequencies and all antibodies was lost over time. CONCLUSION: Humoral and cellular immunity against SARS-CoV-2 is induced with differing kinetics of persistence in those with mild disease. The magnitude of T cells and antibodies is highly heterogeneous in a homogeneous study population. These observations have implications for COVID-19 surveillance, vaccination strategies, and post-pandemic planning.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/blood , Cross-Sectional Studies , Humans , Male , Nucleocapsid Proteins/immunology
3.
J Clin Invest ; 131(17)2021 09 01.
Article in English | MEDLINE | ID: covidwho-1463086

ABSTRACT

Defining the correlates of protection necessary to manage the COVID-19 pandemic requires the analysis of both antibody and T cell parameters, but the complexity of traditional tests limits virus-specific T cell measurements. We tested the sensitivity and performance of a simple and rapid SARS-CoV-2 spike protein-specific T cell test based on the stimulation of whole blood with peptides covering the SARS-CoV-2 spike protein, followed by cytokine (IFN-γ, IL-2) measurement in different cohorts including BNT162b2-vaccinated individuals (n = 112), convalescent asymptomatic and symptomatic COVID-19 patients (n = 130), and SARS-CoV-1-convalescent individuals (n = 12). The sensitivity of this rapid test is comparable to that of traditional methods of T cell analysis (ELISPOT, activation-induced marker). Using this test, we observed a similar mean magnitude of T cell responses between the vaccinees and SARS-CoV-2 convalescents 3 months after vaccination or virus priming. However, a wide heterogeneity of the magnitude of spike-specific T cell responses characterized the individual responses, irrespective of the time of analysis. The magnitude of these spike-specific T cell responses cannot be predicted from the neutralizing antibody levels. Hence, both humoral and cellular spike-specific immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 , Immunity, Cellular/drug effects , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Adult , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Nature ; 584(7821): 457-462, 2020 08.
Article in English | MEDLINE | ID: covidwho-1373437

ABSTRACT

Memory T cells induced by previous pathogens can shape susceptibility to, and the clinical severity of, subsequent infections1. Little is known about the presence in humans of pre-existing memory T cells that have the potential to recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we studied T cell responses against the structural (nucleocapsid (N) protein) and non-structural (NSP7 and NSP13 of ORF1) regions of SARS-CoV-2 in individuals convalescing from coronavirus disease 2019 (COVID-19) (n = 36). In all of these individuals, we found CD4 and CD8 T cells that recognized multiple regions of the N protein. Next, we showed that patients (n = 23) who recovered from SARS (the disease associated with SARS-CoV infection) possess long-lasting memory T cells that are reactive to the N protein of SARS-CoV 17 years after the outbreak of SARS in 2003; these T cells displayed robust cross-reactivity to the N protein of SARS-CoV-2. We also detected SARS-CoV-2-specific T cells in individuals with no history of SARS, COVID-19 or contact with individuals who had SARS and/or COVID-19 (n = 37). SARS-CoV-2-specific T cells in uninfected donors exhibited a different pattern of immunodominance, and frequently targeted NSP7 and NSP13 as well as the N protein. Epitope characterization of NSP7-specific T cells showed the recognition of protein fragments that are conserved among animal betacoronaviruses but have low homology to 'common cold' human-associated coronaviruses. Thus, infection with betacoronaviruses induces multi-specific and long-lasting T cell immunity against the structural N protein. Understanding how pre-existing N- and ORF1-specific T cells that are present in the general population affect the susceptibility to and pathogenesis of SARS-CoV-2 infection is important for the management of the current COVID-19 pandemic.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , T-Lymphocytes/immunology , Betacoronavirus/chemistry , COVID-19 , Case-Control Studies , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cross Reactions/immunology , Humans , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , SARS-CoV-2
5.
Lancet Microbe ; 2(6): e240-e249, 2021 06.
Article in English | MEDLINE | ID: covidwho-1155679

ABSTRACT

BACKGROUND: Studies have found different waning rates of neutralising antibodies compared with binding antibodies against SARS-CoV-2. The impact of neutralising antibody waning rate at the individual patient level on the longevity of immunity remains unknown. We aimed to investigate the peak levels and dynamics of neutralising antibody waning and IgG avidity maturation over time, and correlate this with clinical parameters, cytokines, and T-cell responses. METHODS: We did a longitudinal study of patients who had recovered from COVID-19 up to day 180 post-symptom onset by monitoring changes in neutralising antibody levels using a previously validated surrogate virus neutralisation test. Changes in antibody avidities and other immune markers at different convalescent stages were determined and correlated with clinical features. Using a machine learning algorithm, temporal change in neutralising antibody levels was classified into five groups and used to predict the longevity of neutralising antibody-mediated immunity. FINDINGS: We approached 517 patients for participation in the study, of whom 288 consented for outpatient follow-up and collection of serial blood samples. 164 patients were followed up and had adequate blood samples collected for analysis, with a total of 546 serum samples collected, including 128 blood samples taken up to 180 days post-symptom onset. We identified five distinctive patterns of neutralising antibody dynamics as follows: negative, individuals who did not, at our intervals of sampling, develop neutralising antibodies at the 30% inhibition level (19 [12%] of 164 patients); rapid waning, individuals who had varying levels of neutralising antibodies from around 20 days after symptom onset, but seroreverted in less than 180 days (44 [27%] of 164 patients); slow waning, individuals who remained neutralising antibody-positive at 180 days post-symptom onset (46 [28%] of 164 patients); persistent, although with varying peak neutralising antibody levels, these individuals had minimal neutralising antibody decay (52 [32%] of 164 patients); and delayed response, a small group that showed an unexpected increase of neutralising antibodies during late convalescence (at 90 or 180 days after symptom onset; three [2%] of 164 patients). Persistence of neutralising antibodies was associated with disease severity and sustained level of pro-inflammatory cytokines, chemokines, and growth factors. By contrast, T-cell responses were similar among the different neutralising antibody dynamics groups. On the basis of the different decay dynamics, we established a prediction algorithm that revealed a wide range of neutralising antibody longevity, varying from around 40 days to many decades. INTERPRETATION: Neutralising antibody response dynamics in patients who have recovered from COVID-19 vary greatly, and prediction of immune longevity can only be accurately determined at the individual level. Our findings emphasise the importance of public health and social measures in the ongoing pandemic outbreak response, and might have implications for longevity of immunity after vaccination. FUNDING: National Medical Research Council, Biomedical Research Council, and A*STAR, Singapore.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Cytokines , Humans , Longitudinal Studies
6.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: covidwho-1109140

ABSTRACT

The efficacy of virus-specific T cells in clearing pathogens involves a fine balance between antiviral and inflammatory features. SARS-CoV-2-specific T cells in individuals who clear SARS-CoV-2 without symptoms could reveal nonpathological yet protective characteristics. We longitudinally studied SARS-CoV-2-specific T cells in a cohort of asymptomatic (n = 85) and symptomatic (n = 75) COVID-19 patients after seroconversion. We quantified T cells reactive to structural proteins (M, NP, and Spike) using ELISpot and cytokine secretion in whole blood. Frequencies of SARS-CoV-2-specific T cells were similar between asymptomatic and symptomatic individuals, but the former showed an increased IFN-γ and IL-2 production. This was associated with a proportional secretion of IL-10 and proinflammatory cytokines (IL-6, TNF-α, and IL-1ß) only in asymptomatic infection, while a disproportionate secretion of inflammatory cytokines was triggered by SARS-CoV-2-specific T cell activation in symptomatic individuals. Thus, asymptomatic SARS-CoV-2-infected individuals are not characterized by weak antiviral immunity; on the contrary, they mount a highly functional virus-specific cellular immune response.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , Cytokines/immunology , Lymphocyte Activation , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , COVID-19/blood , Cytokines/blood , Humans , Male , Middle Aged , SARS-CoV-2/metabolism , T-Lymphocytes/metabolism
7.
Cell Rep ; 34(6): 108728, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1039309

ABSTRACT

Virus-specific humoral and cellular immunity act synergistically to protect the host from viral infection. We interrogate the dynamic changes of virological and immunological parameters in 12 patients with symptomatic acute SARS-CoV-2 infection from disease onset to convalescence or death. We quantify SARS-CoV-2 viral RNA in the respiratory tract in parallel with antibodies and circulating T cells specific for various structural (nucleoprotein [NP], membrane [M], ORF3a, and spike) and non-structural (ORF7/8, NSP7, and NSP13) proteins. Although rapid induction and quantity of humoral responses associate with an increase in disease severity, early induction of interferon (IFN)-γ-secreting SARS-CoV-2-specific T cells is present in patients with mild disease and accelerated viral clearance. These findings provide support for the prognostic value of early functional SARS-CoV-2-specific T cells with important implications in vaccine design and immune monitoring.


Subject(s)
COVID-19 , Interferon-gamma/metabolism , T-Lymphocytes , Acute-Phase Reaction , Adult , Aged , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Convalescence , Humans , Immunity, Cellular , Immunity, Humoral , Longitudinal Studies , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL